

#### Acid Base Pathology

Abdullah Al-Asaad King Saud bin Abdulaziz University for Health Sciences



|                          | CO <sub>2</sub> | H+       | + HCO2 |
|--------------------------|-----------------|----------|--------|
| Respiratory<br>Acidosis  | 1               |          | 1      |
| Respiratory<br>Alkalosis |                 |          |        |
| Metabolic<br>Acidosis    | 40              |          | 11     |
| Metabolic<br>Alkalosis   |                 | <b>I</b> | 11     |



### Respiratory Acidosis

- Caused by a decrease in alveolar ventilation 

   increase PaCO<sub>2</sub>
- Result: decrease in pH, slight increase in HCO<sub>3</sub><sup>-</sup>
- Causes:
  - Respiratory depression
  - ✓ COPD
  - ✓ Restrictive lung diseases
  - ✓ Airways obstruction
  - ✓ Pulmonary edema, cardiac arrest
  - ✓ Neuromuscular



### Respiratory Alkalosis

- Caused by an increase in alveolar ventilation relative to body CO2 → decrease in PaCO2
- Result: decrease in H+ (increase pH)
- Causes:
  - ✓ Anxiety
  - ✓ Hypoxemia
  - ✓ Pneumothorax
  - ✓ Ventilation-perfusion inequality
  - ✓ Hypotension
  - ✓ High altitude



#### Metabolic Acidosis

- Caused by gain in H+ as fixed acid (or Loss of HCO<sub>3-</sub>)
- Results: decrease in pH and HCO<sub>3-</sub>
- Causes:
  - 1.Increase acid production
  - 2. Bicarbonate loss: (RTA type II, diarrhea)
  - 3. Decreased ability of the nephron to excrete fixed acid (RTA type I)



#### Metabolic Alkalosis

- Caused by a loss of H+ as fixed acid (or gain in HCO<sub>3-</sub>)
- Result:increaseinpHandHCO<sub>3</sub>-
- Causes:
  - ✓ Vomiting
  - ✓ Loop and thiazides
  - ✓ Barter and Gitelman syndromes
  - ✓ Intracellular shift of H+
  - Primary hyperaldosteronism



#### How to Solve a Question

1. Look at pH first. Determine if Acidosis or Alkalosis (Normal 7.35-7.45)

2. Look at PaCO<sub>2</sub> (Normal 35-45) (does it explain the problem?)

3. Look at HCO<sub>3-</sub> (Normal: 22-26) (does it explain the problem?)









(a) Normal acid-base balance



(b) Respiratory acidosis



(c) Respiratory alkalosis



(d) Metabolic acidosis



(e) Metabolic alkalosis



#### Plasma Anion Gap

- Na+ (Cl- + HCO<sub>3-</sub>)
- Na+ = 140
- $Cl_{-} = 108$
- $HCO_{3-} = 24$
- Anion Gap is most useful in determining the cause of metabolic acidosis



# Non-Anion Gap Metabolic Acidosis

- Cause: Loss of HCO<sub>3</sub><sup>-</sup>
  - ✓ Renal tubular acidosis (I and II)
  - ✓ Diarrhea
  - Early renal failure
  - Acetazolamide therapy
  - Rapid intravenous hydration

## Let's talk Medicine

#### Anion Gap Metabolic Acidosis

- Cause: increase in anions other than chloride
- Another frequently used mnemonic is KARMEL:
  - K Ketoacidosis
  - A —Aspirin
  - R Renal Failure
  - M Methanol
  - E Ethylene Glycol
  - L Lactic Acidosis



# For any questions or comments please contact us at:

info@letstalkmed.com